麻吉秀 卡方分布的逆推设X1,X2,……Xn是来自总体N(0,1)的样本,则统计量χ&#...
1
返回 发布主题 回复
回复:

卡方分布的逆推设X1,X2,……Xn是来自总体N(0,1)的样本,则统计量χ&#...

**92**
楼主#
**92** 发表于
卡方分布的逆推
设X1,X2,……Xn是来自总体N(0,1)的样本,则统计量χ²=X1²+X2²+……Xn²服从自由度为n的χ²分布,记为χ²~χ²n
现在我已知Y~χ²n 问能否找到X1,X2,……Xn使得X1,X2,……Xn服从标准正态分布且
Y=X1²+X2²+……+Xn²
n=1时能找到;n>=2时找不到,但是有Y 与 X1²+X2²+……Xn²同分布
这个怎么证明
**679**
1#
**679** 发表于
本质上涉及高等概率论中测度论的问题,不好打字,在此粗略的说说吧首先在R上构造概率测度P1(N(0,1)分布)即任一A属于B(R),令P(A)=N(01)的密度在A上积分,得到概率空间 (R,B(R),P1)由此构造乘积概率空间(R^n,B(R^n),P),其中乘积概率测度 P=P1×P1×...×P_1令X_i(x1,x2,..,x_n)=x_i,则X_i~N(0,1)分布,(i=1,2,..,n)且相互独立. 于是Y=X1²+X2²+……+Xn²~χ²(n)至于已知一个概率空间上的随机变量Y~χ²(n),那么在这个概率空间上不一定存在X1,X2,……Xn服从标准正态分布且相互独立,这涉及到这个概率空间的西格玛代数的结构和大小
1
返回 发布主题 回复
回复功能已关闭

发表回复

真皮黑色女靴| 百搭呢子靴裤| 男童灯芯绒裤子| 男中筒运动袜| 电脑电源机箱| 田园组合电视柜| 玻璃铁艺| 版条纹t恤| 网站地图
Processed in 0.502195 second(s) , Gzip Off .

© 2019 麻吉秀